
Walrasian Equilibrium

Disaggregated treatment of individual behavior,

and behavior that need not be single-valued

As we’ve noted, our approach to studying equilibrium so far has depended upon

individuals’ demand functions being single-valued and defined for all price-lists. This

dependence was highlighted by our study of the existence-of-equilibrium problem,

which relied on the market demand function and failed to cover such non-pathological

cases as Cobb-Douglas preferences or linear preferences.

The definition of market equilibrium we’re about to give is still that all markets clear.

But by also including the individuals’ choices as an explicit element of the equilib-

rium, we can deal with situations in which some price-lists leave some individuals

indifferent among many available choices; and situations in which some price-lists

leave some individuals with no optimal choice at all. But most important, fram-

ing things explicitly in terms of individual behavior will help us understand a much

broader range of phenomena.

Definition: Let E =
(
(ui, x̊i)

)n

1
be an economy made up of n consumers (u1, x̊1),

. . . , (un, x̊n). A Walrasian equilibrium of E is a pair (p∗,x∗) ∈ Rl
+×Rnl

+ that satisfies

(1) ∀i ∈ {1, . . . , n} : x∗i maximizes ui on the budget set

B(p∗, x̊i) := { xi ∈ Rl
+ | p∗ · xi 5 p∗ · x̊i },

and

(2) ∀k ∈ {1, . . . , l} :
∑n

i=1(x
∗i
k − x̊i

k) 5 0 and
∑n

i=1(x
∗i
k − x̊i

k) = 0 if p∗k > 0.

Note that in this definition an equilibrium consists of both a price-list p∗ and an allo-

cation x∗ = (x∗i)n
1 = (x∗1, . . . ,x∗n) that specifies the bundle each consumer receives.

Condition (1) says that at p∗ the bundles x∗1, . . . ,x∗n are consistent with the indi-

vidual consumers’ demand correspondences: x∗i ∈ Di(p∗) for each i.

Condition (2) says that all markets clear: no good is in excess demand, and any good

in excess supply has a zero price.
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Existence of Walrasian Equilibrium

This theorem allows for undefined demands (as would happen, for example, if a price

were zero and some utility function were strictly increasing) and for weak convexity

of preferences.

Theorem: Let E = ((ui, x̊i))
n
1 be an exchange economy. If each consumer (ui, x̊i)

satisfies the conditions

(a) ui is continuous, increasing, and quasi-concave, and

(b) x̊i
k > 0, k = 1, . . . , l,

then E has a Walrasian equilibrium.

Proof:

For each i, let Di : S →→ Rl
+ and ζ i : S →→ Rl be consumer i’s demand and net

demand correspondences, restricted to the simplex S in Rl:

Di(p) := {xi ∈ Rl
+ | xi maximizes ui on B(p, x̊i}, and

ζ i(p) := Di(p)− x̊i.

We define a “truncated version” of the economy E, in which the consumers’ chosen

bundles are constrained to lie within a given compact set K. To begin with, let

β := 1 + max{x̊k | k = 1, . . . , l}, where x̊ =
∑n

i=1 x̊i, and let K denote the cube

K := {x ∈ Rl
+ | |xk| 5 β, k = 1, . . . , l}.

For each i, define ϕi : S →→ Rl
+, D̂i : S →→ Rl

+, and ζ̂ i : S →→ Rl by

ϕi(p) := B(p, x̊i) ∩K,

D̂i(p) := {xi ∈ Rl
+ | xi maximizes ui on ϕi(p)} , and

ζ̂ i(p) := D̂i(p)− x̊i.

Note that ϕi(p) is the consumer’s truncated budget set, D̂i(·) is his truncated demand

correspondence, and ζ̂ i(·) is his truncated net demand correspondence. The set K is

compact, each ui is continuous, and each ϕi is a continuous correspondence; therefore

the Maximum Theorem guarantees that each D̂i has a closed graph. Therefore each ζ̂ i

has a closed graph as well, and consequently the truncated economy’s excess demand

correspondence ζ̂(·) :=
∑n

1 ζ̂ i(·) also has a closed graph.
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We will first show that ζ̂ has a “market level” (Arrow & Hahn-type) equilibrium –

i.e., that

(1) there is a p∗ ∈ S and a z∗ ∈ Rl for which z∗ ∈ ζ̂ i(p∗) and z∗ 5 0 and p∗k > 0 ⇒
z∗k = 0.

Then we will

(2) find an allocation (x∗i)n
1 that is consistent with the market net demand z∗.

Finally we will show that

(3) (p∗, (x∗i)n
1 ) is a Walrasian equilibrium for E.

We use a fixed-point argument to establish (1). Note that because K is compact and

each ui is continuous, each ζ̂ i must be non-empty-valued on S and therefore ζ̂ is also

non-empty-valued on S. If ζ̂ is also single-valued, we can simply apply our existence

result from Arrow & Hahn. More generally (since ζ̂ may be multi-valued), we define

a “price adjustment” correspondence µ : K →→ S as follows:

µ(z) := {p ∈ S | p maximizes p · z on S}

and a “transition” correspondence f : S ×K →→ S ×K by

f(p, z) := µ(z)× ζ̂(p).

Note that in this construction we take the state space to be S × K, not just S, so

that a state is both a price-list and a net demand bundle; and that just as in our

previous existence proof, the transition function/correspondence f is “made up” – it

does not represent the actual dynamic path of prices and quantities. As in the Arrow

& Hahn proof, we will show that f has a fixed point (p∗, z∗) and then show that any

such (p∗, z∗) must satisfy (1).

We know that ζ̂ has a closed graph and is non-empty-valued and convex-valued, and

it is easy to show that µ has the same properties. Therefore so does f , and Kakutani’s

Theorem therefore implies that f has a fixed point.

Let (p∗, z∗) be a fixed point of f . Because p∗ ∈ µ(z∗), we have p ·z∗ 5 p∗ ·z∗ for every

p ∈ S. We also have p∗ · z∗ = 0, because z∗ ∈ ζ̂(p∗), and because ζ̂ satisfies Walras’s
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Law (each ui is strictly increasing). Combining p · z∗ 5 p∗ · z∗ (for all p ∈ S) and

p∗ · z∗ = 0 yields p · z∗ 5 0 for every p ∈ S, from which it follows that z∗ 5 0 – i.e.,

that z∗k 5 0 for each k. (Suppose, for example, that z∗1 > 0. Then (1, 0, . . . , 0) ·z∗ > 0.

But we have shown that p · z∗ 5 0 for every p ∈ S.) The final part of (1) follows

from our familiar argument: since each p∗k = 0 and each z∗k 5 0, and p∗ · z∗ = 0, we

have p∗k > 0 ⇒ z∗k = 0.

In order to accomplish step (2), we use the z∗ from (1), as follows: Since z∗ ∈ ζ̂(p∗) =∑n
1 ζ̂ i(p∗), there are bundles z∗1, . . . , z∗n such that z∗i ∈ ζ̂ i(p∗) for each i and such

that
∑n

1 z∗i = z∗. But ζ̂ i(p∗) = D̂i(p) − x̊i. Thus, for any z∗i ∈ ζ̂ i(p∗), there is an

x∗i ∈ D̂i(p∗) such that z∗i = x∗i − x̊i – namely x∗i = x̊i + z∗i. This gives us the

allocation (x∗i)n
1 in (2).

We now establish (3) – that (p∗, (x∗i)n
1 ) is a Walrasian equilibrium for E. The market-

clearing equilibrium condition,
∑n

1 x∗i 5
∑n

1 x̊i, is straightforward: z∗ =
∑n

1 z∗i =∑n
1 (x∗i− x̊i), from (2), and z∗ 5 0, from (1). It remains only to establish the utility-

maximizing equilibrium condition, that each x∗i is in Di(p∗), not merely in D̂i(p∗) –

in other words, that at p∗ the truncation of each consumer’s budget set to the cube

K is not actually binding, i.e., that at p∗ the consumer would choose x∗i even if all

of B(p∗, x̊i} were available. We have x∗i ∈ D̂i(p∗) for each i, from (2). Moreover, we

also have x∗i
k 5

∑n
1 x∗j

k 5
∑n

1 x̊j
k < β for each k; therefore each x∗i is in the interior

of K. Now suppose that x∗i 6∈ Di(p∗) for some i – i.e., there is an x̃i ∈ R such that

p∗ · x̃i 5 p∗ · x̊i and ui(x̃i) > ui(x∗i). Since the budget set B(p∗, x̊i} is convex, every

bundle on the line segment [x̃i,x∗i] is also in B(p∗, x̊i}; and since ui(x̃i) > ui(x∗i) and

ui is quasi-concave, every bundle xi on this line segment also satisfies ui(xi) > ui(x∗i).

Further, every neighborhood of x∗i contains bundles on this line segment; and since

x∗i ∈ intK, there are bundles xi ∈ B(p∗, x̊i} ∩ K that lie on the line segment and

which therefore satisfy ui(xi) > ui(x∗i). Consequently, x∗i 6∈ D̂i(p∗), contrary to

what we have already shown, and therefore we must have x∗i ∈ Di(p∗) after all. ‖

Figure 1 depicts the argument in the final paragraph of the proof. Figure 2 shows

why the argument requires that x∗i ∈ intK.
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Figure 1: The argument showing that x∗i ∈ Di(p∗)
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Figure 2: The argument doesn’t work if x∗i 6∈ intK
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